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Introduction

Planck z ≈ 1100 δT
T ≈ 10−5
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Introduction

SDSS z ≈ 0.1 δρ
ρ is small only at large scales.

Pgal(k, z) = 〈|δρ(ki, z)

ρ
|2〉

δρ(ki, z) is the F.T. of the density fluctuations.
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Introduction

The metric for a general homogeneous and isotropic Universe is,

ds2 = dt2 − a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
,

all the dynamics is in the function a(t), a(t) and K are determined
by the content of the Universe

To take into account the small deviations we need to go beyond the
homogeneous and isotropic solution. F.e for scalar perturbations

ds2 = (1− 2ψ(t, x))dt2 − (1 + 2φ(t, x))a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
.
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Introduction

Type 0-order 1-order
Matter ρcdm(t), ρb(t) δρcdm(t, x), δρb(t, x)
Radiation ργ(t), ρNrel

(t) δργ(t, x), δρν(t, x)
Dark energy ρΛ(t), ω

Matter and radiation evolution is determined by Boltzmann equations
up to first order in δρi/ρi.

Geometry is determined by Einstein equations H(z) =
√∑

i ρi(z)

Both sets of eqs are coupled
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Introduction

Cosmological linear theory
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Introduction

Cosmological linear theory
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Introduction

0-order(homogeneous and isotropic),(Ωi ≡ ρi/ρcrit, ρcrit = 3H2

8πG)

Matter → Ωm → Ωcdm, Ωb

Radiation → Ωr → Ωγ (fixed by TCMB), Nrel

Reionization optical depth → τ

Hubble parameter today → H0 → ΩΛ

1-order, initial conditions for δρ/ρ are determined by the primordial
power spectrum from inflation,

Primordial spectrum amplitude → As

Spectral index(ns = 1⇒ flat spectra) → ns

P (k) = As
k1−ns

k3
→ Cl, Pgal(k)
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Introduction

Why do we care about cosmological measurements of GN?

In general the gravitational constant at large scales need not be the
same as the local value.

Constraints from cosmological data will serve as an independent
measurement of GN at these large length scales.

Want to learn more about dark matter and constrain its gravitational
constant.
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How can we measure the gravitational constant GN?

It is well-known that the gravitational acceleration of a probing body
of mass m depends only on the product of Newton’s Constant GN
and the central body mass M .

agrav = −GNM
r2

To break this degeneracy and measure GN , an additional force is
required to define the central body mass.

A variety of methods have been employed, both terrestrial and
cosmological in origin.

Current standard is GN = 6.67384(80)× 10−11 m3kg−1s−2 from
CODATA 2010 with a relative error of 1.2× 10−4.
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Terrestrial Measurements of GN

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino, Nature 510 (2014)
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Cosmological Measurements of GN

Existing studies in the literature have used data from the primordial
abundances of light elements synthesized by BBN and cosmic
microwave background (CMB) anisotropies to constraint GN , as well
as other fundamental constants.

K.-i. Umezu, K. Ichiki, and M. Yahiro, Phys.Rev. D72, (2005)
constrained deviations of GN at the ∼ 5% level using BBN.

S. Galli, A. Melchiorri, G. F. Smoot, and O. Zahn, Phys.Rev. D80
(2009), provided a similar constraint using WMAP+BBN data.

In this work we use the latest available cosmological data to update
the constraint on GN .
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Cosmology with a Modified Gravitational Constant

We introduce a dimensionless parameter λG to quantify deviations of
the gravitational constant from GN (as measured in Earth based
laboratory experiments)

G = λ2
GGN

The introduction of λG modifies the Friedmann equation

H2 =

(
ȧ

a

)2

=
8π

3
a2λ2

GGN ρ̄

*Dots indicate derivatives with respect to conformal time τ .
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Invariance of the Background Evolution

But does this modification to the Friedmann equation actually have any
physical consequences?

H2 =

(
ȧ

a

)2

=
8π

3
a2λ2

GGN ρ̄

No, we can just rescale time

τ → λGτ

and the Friedmann equation is invariant. The background evolution (zero
order) is degenerate with the “expansion clock”.
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First Order Fluid Perturbations

Energy-Momentum Conservation (Hydrodynamical Equations)

Tµν;µ = ∂µT
µν + ΓναβT

αβ + ΓααβT
νβ = 0

For pressureless, non-interacting baryons the first order perturbations to
the hydrodynamical equations are (in the Conformal Newtonian gauge)

δ̇b = −θb + 3φ̇

θ̇b = − ȧ
a
θb + k2ψ

Here, δb ≡ δρb/ρ̄b, θb ≡ ikjvjb , and ds2 = a2(τ){−(1 + 2ψ)dτ2 + (1− 2φ)dxidxi}.
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Cosmology with a Modified Gravitational Constant

If we re-scale time in the Friedmann equation

H2 =

(
a′

a

)2

=
8π

3
a2GN ρ̄

where primes indicate derivatives with respect to τ ′ = λGτ , the parameter
λG will be introduced into the first order perturbation equations

λGδ
′
b = −θb + 3λGφ

′

λGθ
′
b = −λG

a′

a
θb + c2

sk
2δb + k2ψ

Since θb = ikjv
j
b , if we rescale the wavenumbers by k → k/λG the first

order perturbation equations are also invariant.
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Wavenumber Rescaling

The rescaling of wavenumbers does NOT lead to an observable change
because looking at the primordial power spectrum

Ps(k) = As(k∗)
(
k

k∗

)ns−1

,

we see that a rescaling of the wavenumbers is degenerate with the
amplitude of power spectrum As, a free parameter in the ΛCDM
concordance model.

The effect of changing G is to cause the universe to expand faster or
slower by a factor of λG.

Since gravity has no preferred scale, this change is unobservable.

An independent measure of the expansion rate is needed to make λG
physical.
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How can we use cosmology to constrain GN?

In reality, the baryons interact electromagnetically with the photons. We
need to add a Thomson scattering term to the hydrodynamical equations

δ̇b = −θb + 3φ̇

θ̇b = − ȧ
a
θb + c2

sk
2δb +

4ρ̄γ
3ρ̄b

aneσT (θγ − θb) + k2ψ

Equations are no longer invariant under τ → λGτ and k → k/λG.

Thomson scattering term breaks the degeneracy by providing an
independent measure of the expansion rate.

Needed an interaction other than gravity to do this!

Varying G now yields an observable change in cosmological evolution.
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CMB Temperature Power Spectrum

Cosmological equations integrated and CMB spectra computed using
the publicly available CLASS code.
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Ionization Fraction

If λG is increased (decreased), recombination takes place over a
longer (shorter) period of time.
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Analysis Method

Markov Chain Monte Carlo (MCMC) using the publicly available
MontePython code (written to work with CLASS).

For a given point in parameter space θi, compute observables using
our modified CLASS code.

Obtain L(D|θi) using the package provided by the Planck
collaboration which compares the output of the CLASS computation
to the data.

P (θi|D) =
L(D|θi)π(θi)∫
L(D|θi)dθ1..dθN

(1)

Jordi Salvado Slide 28



Table of Contents

1 Introduction

2 Newtons’s Constant for All Matter

2.1 Dependence of CMB Anisotropy on Newton’s Gravitational Constant

2.2 Analysis Method

2.3 Constraints on GN

3 Constraining Dark Matter Equivalence Principle Breaking

3.1 Dependence of CMB Anisotropy on λD

3.2 Constraints on λD and zT

4 Notes on Future Work

5 Concluding Remarks

Jordi Salvado Slide 29



Experimental Data

Planck 2013 Data Release (includes lensing likelihoods)

3 Yr, High-` TT polarization from the Atacama Cosmology Telescope
(ACT) and the South Pole Telescope (SPT).

ACT: 600 sq. deg. of sky at 148 and 218 GHz

SPT 800 sq. deg. of sky at 95, 150, 220 GHz

Combined, they cover 500 < ` < 3500

BAO data from Sloan Digital Sky Survey (SDSS) (Data Releases 7
and 9) and Six degree Field Galaxy Survey (6dFGS).

SDSS Release 7 (9) covers 11,663 (14,555) sq. deg. of sky

6dFGS covers ∼ 17, 000 sq. dg. of sky

Together, they cover a mean redshift range of 0.05-0.5

H0 measurement from Wide Field Camera 3 on HST (0.01 < z < 0.1)

Jordi Salvado Slide 30



Posterior Probability for the Parameters
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Planck Constraint on λG
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Results

Data λG

Planck 1.062+0.0309
−0.0311

Planck+Lensing+BAO 1.041+0.0244
−0.0272

Planck+Lensing+BAO+HST 1.046+0.0257
−0.0269

Planck+ACT/SPT 1.026+0.0128
−0.0142

The Planck+ACT/SPT dataset provides the best constraint on λG
with a relative error of 1.4%. Thus, we report the cosmological
measurement of the gravitational constant as

GN (cosmological) = λ2
GGN = 7.025+0.176

−0.193 × 10−11 m3kg−1s−2 .

This value has a relative error of 2.7% and is consistent with the
CODATA value at ∼ 1.8σ.
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Weak Equivalence Principle

The Weak Equivalence Principle (WEP) states that all objects in a
uniform gravitational field, independent of the mass or other
compositional properties, will experience the same acceleration.

In Newtonian language, the difference between inertial and
gravitational mass must be exactly zero for the WEP to be respected.

Modern experiments report that the difference between inertial and
gravitational masses is zero at the 10−13 level. Thus, violations of the
WEP in the visible sector are tightly constrained.

However, WEP violation in the dark matter sector is far less
constrained.
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Constraints on WEP Violation for Dark Matter

Kesden and Kamionkowski, Phys. Rev. Lett. 97 (2006), used the
tidal disruption of the Sagittarius dwarf galaxy orbiting the Milky Way
to constrain additional dark matter forces at the 10% level.
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WEP Violation in the Dark Matter Sector

We introduce WEP violation into the dark matter sector by allowing
the gravitational charge of dark matter to differ from the inertial mass
by a factor of λD

mgrav
D = λDmD

Consequently, if we have two matter particles b1 and b2 and two dark
matter particles D1 and D2, the gravitational forces in terms of the
particle inertial masses are

Fb1,b2 = −GNmb1mb2

r2
, Fbi,Dj

= −λD
GNmbimDj

r2
,

FD1,D2 = −λ2
D

GNmD1mD2

r2
.

Jordi Salvado Slide 37



General Coupled Friedmann Equations

We add in the other species by assuming they couple to gravity in the
same way as the baryons

1

a

d2a

dt2
= −H

2
0

2

[
Ωb

a3
+

2ΩR

a4
+ (1 + 3w)

ΩΛ

a3w+3
+
λDΩD

a3
D

]
1

aD

d2aD
dt2

= −H
2
0

2

[
λD

(
Ωb

a3
+

2ΩR

a4
+ (1 + 3w)

ΩΛ

a3w+3

)
+
λ2
DΩD

a3
D

]

No simple analytic integration to get first order Friedmann equations.

We introduce the parameter H0 to distinguish from H0, because for
λD 6= 1, H0 is not the expansion rate today.

For the usual ΛCDM cosmology, ΩΛ is not an independent parameter
(it is fixed by requiring a flat universe). For our case with two scale
factors, we will keep ΩΛ as a free parameter.
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Two Fluid Decoupling: Initial Conditions

Before the transition redshift zT , we integrate the ordinary Friedmann
equation, since everything evolves as a multi-component fluid
described by a single scale factor aord.

After zT , dark matter decouples and evolves as a separate fluid
according to a dark scale factor aD. The rest of the species evolve
according to a scale factor a.

Thus, our initial conditions are fixed by requiring aD = a = aord and
ȧD = ȧ = ȧord at zT .
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Modified First Order DM Fluid Perturbations

So far we have only considered modifications to the background
evolution equations.

When working in the baryon co-moving frame, the dark matter fluid
receives a modification to the first order perturbation equations.

The first order perturbation equations for the other species stay the
same.

In what follows, dots indicate derivatives with respect to conformal
time defined using ordinary baryon scale factor dt = a(τ)dτ .
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Modified First Order DM Fluid Perturbations

The modified DM fluid perturbations in the baryon co-moving frame
x = a(t)q are

δ̇D + D̂δD + θD = 0,

θ̇D + (4HD − 3H + 2D̂)θD +∇2
qδψ = 0,

∇2
qδψ = 4πGa2 [ρ̄bδb + λDρ̄DδD] .

With the operator D̂ defined as follows

D̂ =

(
1− H

HD

)
(v0
D · ∇q).

This operator D̂ is a directional derivative which translates from the dark
matter frame to the baryon frame.
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Modified First Order DM Fluid Perturbations

The modified first order dark matter fluid perturbations in k-space are

δ̇D + (H −HD) (3 + k ∂k) δD + θD = 0,

θ̇D + H θD + 2 (H −HD) (1 + k ∂k) θD + k2 δψ = 0,

k2δψ = 4πGa2 [ρ̄bδb + λDρ̄DδD] .

Because the dark matter co-moving frame is not identical to the
baryon one, bias terms proportional to (H −HD) enter the above
equations.

This frame conversion term contains k-derivatives which we
implement using a finite difference method. This term couples
adjacent modes.
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Effect of dark WEP breaking on the CMB TT Spectrum

ηD = λD − 1
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Allowed region for λD as a function of zT

Using just data from Planck, λD − 1 is consistent with zero at the
10−6 level or less for all zT ≥ 103.
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Tension in the Measurements of H0

Measurement of H0 by Planck 2013

H0 = 67.4± 1.4 km s−1 Mpc−1

Measurement of H0 by Wide Field Camera 3 on HST

H0 = 73.8± 2.4 km s−1 Mpc−1

Have ∼ 2σ tension between these measurements. Can our model help
to alleviate this tension?
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Hubble Space Telescope Prior

Prefer λD − 1 6= 0 at ∼ 2σ if we use data from the Hubble Space Telescope

to impose a prior of H0 = 73.8± 2.4 km s−1 Mpc−1.
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Dark Energy Correlation with λD

Although dark energy and λD have a similar effect at zero order, they
are in fact independent parameters with non-trivial correlation.
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Long Range Fifth Force Model

Use a traditional long range “fifth force” to model different dynamics
in the dark matter sector.

L = iψ̄γµ∇µψ −mψψ̄ψ −
1

2
∇µφ∇µφ−

1

2
m2
φφ

2 + gφψ̄ψ

For scales smaller than rs = m−1
φ , the Yukawa interaction mediates a

fifth force. This fifth force will be long ranged if the mediator φ is
nearly massless.

V (r) = −
Gm2

ψ

r

[
1 + αYuk exp

(
− r

rs

)]

Attempt to constrain αYuk using the latest cosmological data.

Rachel Bean, Eanna E. Flanagan, Istvan Laszlo, and Mark Trodden, arXiv:0808.1105, (2008)
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Conclusions

We used the latest cosmological data to derive a constraint on GN
for all matter at the 2.7% level.

We used a Newtoninan two fluid description to explicitly break the
WEP in the dark matter sector.

Using this method, we can constrain WEP in the dark matter sector
at the 10−6 level or less for all zT ≥ 103.

We intend to use the latest cosmological data to constrain a long
range fifth force between dark matter particles.

Cosmological data is very useful tool for studying the dark sector.
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THE END
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Effect of dark WEP breaking on the CMB EE Spectrum
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Effect of dark WEP breaking on the CMB TE Spectrum

ηD = λD − 1
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CMB EE Power Spectrum
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CMB TE Power Spectrum
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